Product Code Database
Example Keywords: software -halo $35-118
   » » Wiki: Space Mapping
Tag Wiki 'Space Mapping'.
Tag

The space mapping methodology for modeling and design optimization of engineering systems was first discovered by in 1993. It uses relevant existing knowledge to speed up model generation and design optimization of a system. The knowledge is updated with new validation information from the system when available.


Concept
The space mapping methodology employs a "quasi-global" formulation that intelligently links companion "coarse" (ideal or low-fidelity) and "fine" (practical or high-fidelity) models of different complexities. In engineering design, space mapping aligns a very fast coarse model with the expensive-to-compute fine model so as to avoid direct expensive optimization of the fine model. The alignment can be done either off-line (model enhancement) or on-the-fly with surrogate updates (e.g., aggressive space mapping).


Methodology
At the core of the process is a pair of models: one very accurate but too expensive to use directly with a conventional optimization routine, and one significantly less expensive and, accordingly, less accurate. The latter (fast model) is usually referred to as the "coarse" model (coarse space). The former (slow model) is usually referred to as the "fine" model. A validation space ("reality") represents the fine model, for example, a high-fidelity physics model. The optimization space, where conventional optimization is carried out, incorporates the coarse model (or ), for example, the low-fidelity physics or "knowledge" model. In a space-mapping design optimization phase, there is a prediction or "execution" step, where the results of an optimized "mapped coarse model" (updated surrogate) are assigned to the fine model for validation. After the validation process, if the design specifications are not satisfied, relevant data is transferred to the optimization space (""), where the mapping-augmented coarse model or surrogate is updated (enhanced, realigned with the fine model) through an iterative optimization process termed "parameter extraction". The mapping formulation itself incorporates "intuition", part of the engineer's so-called "feel" for a problem. In particular, the Aggressive Space Mapping (ASM) process displays key characteristics of cognition (an expert's approach to a problem), and is often illustrated in simple cognitive terms.


Development
Following 's concept in 1993,J.W. Bandler, "Have you ever wondered about the engineer's mysterious 'feel' for a problem?" IEEE Canadian Review, no. 70, pp. 50-60, Summer 2013. Reprinted in IEEE Microwave Magazine , vol. 19, no. 2, pp.112-122, Mar./Apr. 2018.J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2536-2544, Dec. 1994. algorithms have utilized Broyden updates (aggressive space mapping),J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2874-2882, Dec. 1995. trust regions,M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen, "A trust region aggressive space mapping algorithm for EM optimization," IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2412-2425, Dec. 1998. and artificial neural networks.M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, "Neural space mapping EM optimization of microwave structures," IEEE MTT-S Int. Microwave Symp. Digest (Boston, MA, 2000), pp. 879-882. Developments include implicit space mapping,J.W. Bandler, Q.S. Cheng, N.K. Nikolova and M.A. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 378-385, Jan. 2004. in which we allow preassigned parameters not used in the optimization process to change in the coarse model, and output space mapping, where a transformation is applied to the response of the model. A 2004 paper reviews the state of the art after the first ten years of development and implementation.J.W. Bandler, Q. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard, "Space mapping: the state of the art," IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004. Tuning space mappingS. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, "Accelerated microwave design optimization with tuning space mapping," IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 383-394, Feb. 2009. utilizes a so-called tuning model—constructed invasively from the fine model—as well as a calibration process that translates the adjustment of the optimized tuning model parameters into relevant updates of the design variables. The space mapping concept has been extended to neural-based space mapping for large-signal statistical modeling of devices.L. Zhang, J. Xu, M.C.E. Yagoub, R. Ding, and Q.J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 2752-2767, Sep. 2005.L. Zhang, Q.J. Zhang, and J. Wood, "Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices," IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, pp. 2453-2467, Nov. 2008. Space mapping is supported by sound convergence theory and is related to the defect-correction approach.D. Echeverria and P.W. Hemker, "Space mapping and defect correction" Computational Methods in Applied Mathematics, vol. 5, no, 2, pp. 107-136, Jan. 2005.

A 2016 state-of-the-art review is devoted to aggressive space mapping.J.E. Rayas-Sanchez, "Power in simplicity with ASM: tracing the aggressive space mapping algorithm over two decades of development and engineering applications", IEEE Microwave Magazine, vol. 17, no. 4, pp. 64-76, April 2016. It spans two decades of development and engineering applications. A comprehensive 2021 review paper J.E. Rayas-Sánchez, S. Koziel, and J.W. Bandler, “Advanced RF and microwave design optimization: a journey and a vision of future trends,” (invited), IEEE J. Microwaves, vol. 1, no. 1, pp. 481-493, Jan. 2021. discusses space mapping in the context of and design optimization; in the context of engineering , feature-based and cognition-driven design; and in the context of , , and human intelligence.

The space mapping methodology can also be used to solve . Proven techniques include the Linear Inverse Space Mapping (LISM) algorithm,J.E. Rayas-Sanchez, F. Lara-Rojo and E. Martanez-Guerrero, "A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits", IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 960-968 2005. as well as the Space Mapping with Inverse Difference (SM-ID) method.M. Şimsek and N. Serap Şengör "Solving Inverse Problems by Space Mapping with Inverse Difference Method," Mathematics in Industry, vol. 14, 2010, pp 453-460.


Category
Space mapping optimization belongs to the class of surrogate-based optimization methods,A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset, "A rigorous framework for optimization of expensive functions by surrogates," Structural Optimization, vol. 17, no. 1, pp. 1-13, Feb. 1999. that is to say, optimization methods that rely on a .


Applications
The space mapping technique has been applied in a variety of disciplines including microwave and design, civil and mechanical applications, aerospace engineering, and biomedical research. Some examples:


Simulators
Various simulators can be involved in a space mapping optimization and modeling processes.


Conferences
Three international workshops have focused significantly on the art, the science and the technology of space mapping.

  • First International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2000)
  • Second International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2006)
  • Third International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Reykjavik, Iceland, Aug. 2012)


Terminology
There is a wide spectrum of terminology associated with space mapping: ideal model, coarse model, coarse space, fine model, companion model, cheap model, expensive model, , low fidelity (resolution) model, high fidelity (resolution) model, empirical model, simplified physics model, physics-based model, quasi-global model, physically expressive model, device under test, electromagnetics-based model, model, computational model, tuning model, calibration model, surrogate model, surrogate update, mapped coarse model, surrogate optimization, parameter extraction, target response, optimization space, validation space, neuro-space mapping, implicit space mapping, output space mapping, port tuning, predistortion (of design specifications), manifold mapping, defect correction, model management, multi-fidelity models, variable fidelity/variable complexity, , coarse grid, fine grid, surrogate-driven, simulation-driven, model-driven, feature-based modeling.


See also
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time